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1 Introduction

We consider an ordinal variant of the multi-armed bandits problem. Instead of directly observing
numerical values of the reward instances, rankings over them are obtained. We construct a U-statistic
estimator for the probability of one arm beating another and examine its asymptotic statistical proper-
ties. An upper bound on its variance is also derived. Finally, we propose and empirically demonstrate
strategies to identify the best arm using these probability estimates.

1.1 Motivation

This variant, like the similar qualitative and duelling settings, is motivated by the need for robust
methods for eliciting and incorporating subjective, hard to quantify, domain expert knowledge. We
alm to propose more robust methods than subjective scores for settings where ordinal information is
more appropriate. This may for example be relevant in exploring the purchase and review of goods or
food from multiple sources and establishing the best one.

1.2 Problem statement

We consider a multi-armed bandit problem where the reward for each action is not observed directly.
Instead, upon choosing an action at time step ¢, we observe ¢t — 1 ordinal reward signals comparing our
action’s (latent) reward to those of each of the previous actions. Equivalently, we can interpret the
feedback as providing a ranking over all latent reward instances so far.

Assume we have K arms, indexed by £ = {1,2,...,K}. For all i € K let the reward distribution
for the ith arm be some sub-gaussian random variable R;, with mean A;.

2 Literature review

2.1 Hypothesis testing for stochastic order using ranking information
2.1.1 Stochastic order

Given two random variables X and Y with continuous cumulative distribution functions F'x and Fy
respectively. X is said to be stochastically larger than Y if for all values of a, Fx(a) < Fy(a), which
is equivalent to P(X > a) > P(Y > a).

If X is stochastically larger than Y, it is necessarily larger in expectation.



2.1.2 Wilcoxon rank sum statistic or Mann Whitney U-statistic

This is a non-parametric version of the two-sample t-test, since we want to infer whether two samples
have the same central tendency. Unlike the t-test, it does not make normality (or any distributional)
assumptions about our data but has lower statistical power. The Wilcoxon and Mann-Whitney tests
are inferentially equivalent, only differing in the test statistics used.

The U statistic [MW47] measures the number of pairs (X;,Y;) such that X; <)

Assumptions:
1. The two samples are independent of each other.
2. The two samples have equal variance.
Procedure for computing either statistic:

1. Pool data from both groups C' = {z1,...,Zm,y1,...,Yn} and assign ranks Z = {z1,..., Zmin}-

2. Let sums of ranks Rx = > 1", z; and Ry = St . (Rx + Ry = Ww)

3. The Wilcoxon rank sum statistic for X is W = Rx.
4. The U-statistic for X is Ux = Rx — %

Null hypothesis: P(X >Y)=P(X <Y)=0.5
Alternative hypothesis: P(X >Y) >050r P(X >Y) < 0.5

Under the null hypothesis, for large sample sizes (m,n > 10), W ~ N (Aw, J%,V) approximately, where
AW _ m(m+n+1) mn(m+n+1)
- 2

v , meaning we can compute the Z-score and from it, the p-value.

2 _
and oj, =

Under the same conditions, Ux ~ N (Ay, %) approximately, where Ay = = and 0% =

Bayesian equivalent of this has also been proposed. [DLMW19]

mn(m+n+1)
12

2.2  Qualitative Bandits

The problem of qualitative bandits [SBWH15] studies a generalized bandit setting where we get rewards
on a qualitative scale that allows comparison but not arithmetic operations like averaging of rewards.
This is analogous to our setting.

Arm distributions are defined over a completely ordered set (L, »=). The quality of an arm is
expressed in terms of its 7 quantile of the arm’s (categorical) distribution over L.

2.3 Dueling bandits

In the dueling bandits problem|BBMH21], we have K arms, say {1,...,K}, and we want to find
the optimal one. Unlike the standard multi-armed bandit setting, however, we do not have access
to numerical rewards on pulling a single arm- we can only get feedback in the form of noisy ordinal
comparisons I(i > j) between pairs of arms. An action is thus the selection of two arms to compare.

We can characterize the feedback with pairwise preference probabilities
P(i = j) = ai,

of observing a preference for arm ¢ versus j. We can structure this as matrix representing a prefer-
ence relation Q = [¢; j]1<ij<x € [0, 1)5xK " Clearly, each ¢;,; specifies a Bernoulli distribution over
I(i = j) € {0,1}, which is assumed to be stationary and independent across arms, and time steps.



Hence, the outcomes of previous iterations (even those of (i,7) do not affect the outcome of action
(i,4)- it is freshly sampled from the aforementioned Bernoulli.

We say arm ¢ beats j if ¢; ; > % i.e. 7 is more likely to win in a pairwise comparison than j is.

Aij =i~

DN | =

2.3.1 Learning tasks

1. Best arm: The best arm (equivalent to the Condorcet winner) is ¢* € K such that A;; > 0
Vi e K\ {i*}. A Condorcet winner may not exist if preferences are cyclic.

2. Ranking of arms
3. Top-k arms

4. Estimation of the preference relation/utility function

2.3.2 Regret

The regret at time step ¢, if it chooses arms i(t) and j(t), is defined as

Airiw) + Birjy _ Gimi) + iy 1
2 2 2

T =

2.3.3 Generating process models

There can be multiple valid generative models for dueling bandits as the various comparison signals
are mutually independent.

Bradley Terry model
According to the Bradley-Terry model, we directly model the probability of the outcome of pairwise
comparisons as:
efi - 1
ebi+efi 1+exp(B2— B1)

where (3; and §; are real-valued scores (possibly of utility functions) assigned to ¢ and j respectively.
Instead of the logistic, we can also use some other link function.

B(i > j) =

Latent random reward model
In this, the ith arm b; is associated with a reward random variable R; from which a draw is made each
time to compare with the reward sampled from another arm. Assuming that R; ~ N (A;, 1), we have
R, — R; ~N(A; — Aj,2)

P(Z }j) :P(Rl —Rj > 0)

3 Estimation of P(i = j)

3.1 Two arm case
3.1.1 Estimation of P(X >Y)
Let K = {1,2}. Let X ~ NV(A,1),Y ~N(A,1). X —Y ~N(A,2).



Assume some i.i.d. latent reward realizations z; ~ X and y; ~ Y ii.d.

We propose the following estimator:

A 1 L 1

where U is the Mann-Whitney statistic (computed using ranks) for the reward samples from X and
Y.

We will prove the following theorems regarding the statistical properties of this estimator.
Theorem 1.1 p is a consistent estimator of p.
Theorem 1.2 p is an unbiased estimator of p.

Theorem 2.1 The variance of p given the value of A is

Vm,n(A):T;n{CD (\%) —(m+n-1)- @ (2)+(m+n—2)-\I/(A)}

where ®(-) is the standard normal cumulative distirbution function and ¥(A) is the CDF of a bivariate

normal random variable with mean {0

. 2 1 . . A
O] and covariance [1 2] until the point [ A}

Theorem 2.2 The best A agnostic bound on the variance of p is

1 1 1
D < = — —
Var(p) < szp Vinn(8) 12m + 12n + 12mn

3.1.2 Consistency

. A . 1
A i = fiw ti 0D 3 HX > )

€Ty jeET>
. o1
= i i 0 D M > )
€Ty jET?
= i ! li ! I
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1
25 lim — Y E[I(Ry > ;)]
meree m 1€T

1
= lim — Y P(Ry > )
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1 .
= lim — > P(Ry> R
3 (e )
2%, Eg, [P(Ry > Ry)]
= P(Rg > Rl)



3.1.3 Unbiasedness

For fixed i, the inner sum >, p I(y; > 2;) is a sum of i.i.d. indicators (because we're conditioning
on x;), each with probability P(Rs > z;)

E[p] = E %Z > Iy, > )

i€Ty jeTz
1
= %ERI Z ERz Z H(y] > xl) | T
L i€T JET,
1
= %]ER1 Z Z Egr, [[(y; > x;) | z;]| For fixed ¢, inner sum is sum of i.i.d. indicators
_i€T1 JETS
. -
= 7]1‘11%1 Z nlP (R2 > 33,')
man LieTy
1
= - Z Eg, [P(R2 > ;)]
€Ty

% Z P(RQ > Rl)

€Ty

= P(Rg > R1)

3.1.4 Asymptotic Normality

Both the Wilcoxon and Mann-Whitney test statistics (differing only by a constant) have well-known
results on asymptotic normality |Cap61]. This also holds for p, which is a scaled U statistic.



3.1.5 Variance analysis of p

Varlp| = Var % Z Z I(y; > ;)

i€Ty jeETL

= ﬁV@T Z Z I(y; > ;)

€Ty jeETS

= ﬁ . Z Z Var [H (yj > (Ez)] + Z Z Z Z Cov[]l(yj > Ii)7ﬂ(yj/ > LL‘Z/H

€T jET> €Ty jeTy /€Ty j' €T

e (T X vorti > m)

i€Ty jET:

+ Z Z Z Cov[l(y; > x;),I(y;r > ;)]

1€T jET j'€Ta\{j}

+ Z Z Z Cov[l(y; > z;),l(y; > l”z'ﬂ)

JET ieTy ireTy\{i}

The last line follows because I(y; > x;) and I(y;s > x;) are independent if i # ¢’ and j # j' (since z;, x;
and y;,y; are all mutually independent). Thus all covariance terms not sharing a common random
variable become zero.

We now consider the three types of terms one by one:

Ell(y; > =) =p Vi,j

Var [I(y; > z:)] = E[(I(y; > 2:))°] — (E[L(y; > 2:)])?

o(3)-(3)



Covll(y; > x), Uy, > xi)] = E[(I(y; > zi) — p)(Ly; > =) — p)]
(y; > @) - Wyz > @:))] - p°

Iy; > i) - Wy > @) |a]] = p
I(y; > x;)|x;] - E[l(y;r > 2;))|z:]] — p* conditionally independent
Y > Xi| Xi = x;) - P(Yy > X4|X; = a)] — p?

- ‘I’Y(xz)) (1= @y (2:)] - p

2

i?EE

=Plx—v<Ar—w<A) - d? (A>

(=] [ a-fle-R )2 (3)

where VU is the multivariate CDF.

Coull(y; > i), 1(y; > wi)] = E[(I(y; > x:) = p)(I(y; > zir) — p)]
I

(yj > ) - ]I(y] > xir))] — p2
E[l(y; > @) - Wy; > za))|y;]] — ?

E[
E
E
=E[E[l(y; > =;)|y;] - E[l(y; > xi+))|y;]] — p*> conditionally independent
=E|
E[
E[

E

Y > XY =y) - P(Y; > Xo|YV; = y)] — p?
P(X; <y)-P(Xy <y)] -
x(¥) - ®x(y)] —p°

4

- /ji by — A)D?(y)dy — D> (\%)
= /: B(2)D2(z + A)dz — B2 (\%)
32

=Pv—2<Aw—2<A)—d? <\%> iid v, w ~ N(0,1)

(e[ [ a-fle-f ) (3

This is the same as Cov[l(y; > z;),I(y;; > x;)], and is numerically computable. We plot this as a
function of A and compare it to the Monte Carlo estimate of the covariance:
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Comparison: Theoretical vs Empirical Estimates of g(u)
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Figure 1: g(A) represents Cov[I(y; > z;),1(y; > x;)] as a function of A

Visually, it’s apparent that it reaches a maximum at A = 0, where its value is 1—12
Plugging these into the expression for Var[p], we obtain

xmﬂmzn;{é(j%>—on+n—m.&<f%>+0n+n—mAwA%

Thus, we can upper-bound the variance by

1 1 1
pl < —— (p = p? —1n - — —-1). —
Var[p] < - {mn (p—p°) +m(m—1)n 13 +mn(n—1) 12}

SVI{@—p%+On+n—%~1}

mn 12
<L 1+(m+n—2)
~—mn |4 12
< m+n+1
- 12mn

This bound is identical to the appropriately scaled asymptotic variance of the U statistic under the
null hypothesis in the literature (since A = 0 corresponds to p = %)

3.1.6 Estimation of A from p

We can see that:

P(X>Y)=P(X -Y >0)

A
=1-9(——
! ( 2)
A
= @ E—
g (ﬁ)
We can define an estimator for A based on our estimate for p:

A= V2071 (p)



3.2 Comparison with i.i.d. estimator

Define

min{m,n}

p= Y, lai>w)
=1

We can observe that unlike in the case of p, p is a sample mean of i.i.d. observations. Thus, it is
also consistent, unbiased and asymptotically normal.
The variance of p in terms of A is

e~ gt () (-2 (33))

2
For all values of A and m,n, we have Wy, ,,(A) > V,, ,,(A). Visually, we can check this plotting

W and V as functions of A keeping m,n fixed.

Comparison of Vo(A) and Wyp(A) over [-5, 5]
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Figure 2: Variances of estimators

Additionally, the variance bound for p is also tighter than the resulting bound for p. We visualise
this below. In the limit,
sup Var[p]
Ai — §
sup Var[p] = 2
A
Thus, our proposed estimator p is better than p in terms of utilising all available information in
order to lessen uncertainty.

3.3 Extending to multi-arm case

It is non-transitive i.e. p; ; > 1/2 and p; r > 1/2 does not imply p; > 1/2 2. Thus, just estimating the
various p; ;s could be insufficient to determine a ranking over arms or even the best arm (corresponding
to the Condorcet winner).

Assume K = {1,2,3}. We want to draw inferences about orderings.

One simple estimator for the probability that arm 1 is the best arm is:

Pim o oSS S (R0 BY)1(RY > BY)

1€Ty jJET2 k€T3



Comparison of Variance Bounds
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Figure 3: Variance bounds of estimators

We have insufficient information about the distribution of this estimator so far, but it could be a
promising, direct direction for the multi-arm case.

Alternatively, we can use a version of the Copeland score from computational social choice theory
using the pairwise probability estimates:

R 1
Ci = ZH (pm' > 2)
i#£j

This could be used to rank arms in a way similar to that in [SG20] for successive elimination for a
PAC best-arm identification approach.
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4 Fixed Budget Algorithm

4.1 Algorithm

Algorithm 1 UNIFORM-ALLOCATION
1. input: Set of items: A = {1,2,...k}, budget Q
2: init: R+ A, [+ 1
3: while |[R| > 1 do
4: for a € R do

5: Play arm a for Q' := % times
6: end for

7 for i € R do

8: for j € R do

9: update p;;

10: end for

11: Compute C; == 3., I(pi; > 1)
12: end for

13: Define C' + Median({C;}icr)
4: R+ {ieR|C;>C}

15: l+—1+1

16: end while

17: output: The remaining item in R

4.2 Theorem

Assuming that any estimator with m and n samples from the two distributions respectively is dis-

tributed as p ~ N(p, “1142'7’;:1) This is only true asymptotically for large sample sizes so the bound is

invalid for the small sample setting.

Let our budget be ), number of arms be k. Define the problem complexity parameter A,,;, =

mini#* Az where Az = Pixi — % = % — Piix-

Then, our algorithm finds the optimal arm with probability at least

VElog, k Q 2
L 00 P <‘A )

4.3 Proof

Assumption: p; ; ~ N (p; j, 02), 1 is the best arm

11



— 12m?
2m +m
12m?2
L
4m
A;
— >2vmA;
o
A;
o (28) > o (2vma,)
o

1—@(?) <1-9(2vVmA;)

Probability of suboptimal arm ¢ # 1 beating arm 1 according to p

. 1 . 1
P <Pz‘,1 > 2) =P <pi,1 —Pi1> 3 —pi,l)

= P(ﬁi,l —Dij1 > A;)

Di,1 — P A;
:P<P,1 P,1>>
o o

1¢<Ai>

o

<1-® A
/1
4m

<1—@(2v/m4,)

< exp (—2mA?)

1
24/2mmA;

The last step is by Mill’s inequality.
Define V = Zi;ﬂ I (Pi,l > %)

E[V] = ZIP’ <pi,1 > ;)

i#1

1
< ———— exp (—2mA?
- kt vV 27TmAl P ( ! )
ki — 1

< —— - ex
o kt \% 27TmAmin P (

1
< —¢ 72mA2
S A xp ( )

Probability of elimination throughout log, (k) rounds:

—9mA?

min)
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log, k

P(1 gets eliminated in one of 1,2, ... ,log, k) < Z P(1 eliminated in round )
=1

log, k
1
< ——— € —2m AQ ;

1 k
< Jomk (_2. % .Agm_n>
QTF%Amin

o Vhlogyk  ( Qps
V WQAmin k

Future directions

. Obtain a practically useful concentration bound for p that lets us derive an algorithm that
provably finds the best arm with any given probability (PAC setting) or given a budget, lets us
find a lower bound on probability of finding best arm (fixed budget setting).

. Study the distribution and concentration of P

. van Doorn et al (2019) propose a Bayesian variant of the Mann-Whitney test between two random
variables using Gibbs sampling. This sampling procedure could be extended to the several arms
case to obtain an ordinal Thomson sampling scheme.
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