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2 Introduction to game theory

Game theory is a branch of mathematics that studies the strategic interactions among rational agents. In its
simplest form, a game is defined by its players, actions, and payoffs. Evolutionary game theory is an extension of
classical game theory that seeks to model how the strategic interactions among agents evolve through a series of
games over time.

2.1 Players

In a game, the entities making decisions are referred to as players. A player can represent an individual, a group,
or even an inanimate object like a computer program. We consider games consisting of a finite set of n players,
denoted by N = {1, 2, . . . , n}.

2.2 Actions

Each player has a set of actions they can take. These are the basic decisions that a player can make, often represented
as Ai = {s1, s2, . . . sm} for player i. The actions of the players collectively determine the outcome.
In a game involving n players, an action profile is a tuple (a1, a2, . . . , an), where ai ∈ Ai represents the action taken
by player i. An action profile thus specifies a particular combination of actions chosen by a set of players in the
game at a given instance. Since they are indistinguishable in our context, we use the words actions and strategies
interchangeably.

2.3 Outcomes

An outcome refers to a specific end-state that results from a particular combination of actions taken by all players
in the game. It can be represented as a point in the set of all possible outcomes, typically denoted by O. In
deterministic games, which are the subject of our study, the outcome is uniquely determined by the action profile
of the players.
The set O can thus be constructed as the Cartesian product of all players’ action spaces. For a game involving n
players with action spaces A1, A2, . . . , An, the set of all possible outcomes O can be defined as:

O = A1 ×A2 × . . .×An

Each outcome o ∈ O is a tuple (a1, a2, . . . , an), where ai is the action taken by player i.

2.4 Preferences

Given any two outcomes, a player can always discern which is better (or if the two are identical) in terms of utility.
Preferences in game theory are formally represented by a relation over the set of outcomes O, which captures how
a player ranks different outcomes. Given any two outcomes a, b ∈ O, the following can be true:
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• a ≻ b means the player strictly prefers action a over b.

• a ∼ b means the player is indifferent between a and b.

• b ≻ a means the player strictly prefers action b over a.

We assume these preferences to be transitive, i.e., if a ≻ b and b ≻ c, then a ≻ c.

2.5 Payoffs

Payoffs represent a measure for the outcomes of a game for each player, allowing us to represent preferences
succinctly. Once an outcome is realized, each player receives the payoff, which quantifies the utility received by
that player. The payoff functions ui : O → R map outcomes to real numbers, specifying the payoff for each player
i under each possible outcome. Formally, the payoff function for player i and outcome o can be written as:

ui(o) = ui(a1, a2, . . . , an)

For two player games, we use the notation vi(sj , sk), which represents the payoff to player i for following strategy
j upon encountering a player following strategy j.

2.6 Best Response Functions

The best response of player i is the action that maximises the payoff function, given that the other players do not
change their actions. The Best Response function Bi : A−i → P(Ai) for player i maps each action profile a−i of
the other players to a set of player i’s best responses. It is formally defined as:

Bi(a−i) = argmax
sj∈Ai

ui(sj , a−i)

3 Problem definition

In game theory, a ”dynamic” refers to a model or process that describes how the game evolves over time. Dynamics
introduce a temporal element, allowing us to study how players might adjust their strategies in response to the
actions of others, how strategies evolve, or how equilibria are reached or disrupted over time.

We consider a populationN of n identical players {1, 2, . . . n} , each having identical action spacesAi = {s1, s2 . . . sm},
playing a sequence of ”games” in discrete time steps. The players are identical, hence the two-player interaction
payoffs vi(sj , sk) = v(sj , sk) are constant for all players i ∈ N .

3.1 Best Response Dynamic

In a best response dynamic, each player decides its action for the next iteration of the game based on the
observed action profile of all other players. Since it can observe every other player’s action, each agent can compute
the proportions of players following specific actions to determine the payoff values and thus decide the action it
takes in the next time step.

We define the payoff of player i for an action profile as the expected payoff of a randomly sampled two-player
interaction involving i.

ui(a1, a2, . . . , an) = E[v(ai, aj)]

where j is sampled uniformly randomly from {1, 2, . . . , n} \ {i}.

We observe that the payoffs are uniquely determined by the distribution - sampling probabilities - and thus the
proportions of the various actions in the population of interest. Hence, only the proportions of the various strategies
are relevant for computing strategy payoffs. Considering player i adopts strategy ai and proportions (pi,h of all
players except i adopt sh, we define a new payoff function mapping a tuple of action and the various proportions
to payoffs:

Ui(ai, pi,1, pi,2 . . . pi,m) =

m∑
h=1

pi,h · v(ai, sh)
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Equivalently, Ui = Vpi where, pi is the action profile vector (m×1) specifying the proportion pi,h of each strategy
sh in the population of players excluding i, Ui is the payoff vector (m× 1) specifying the payoff Ui,h of each action
sh given the action profile, and V is the two player payoff matrix (m×m) , vj,h = v(sj , sh)

We can also define a reparametrized version of the best response function in this case:

B′
i(pi,1, pi,2 . . . pi,m) = argmax

sj∈Ai

Ui(sj , pi,1, pi,2 . . . pi,m)

3.2 Sampling Best Response Dynamic

This dynamic attempts to replicate the information uncertainty that real life agents operate under. For each player
i, we draw a random uniform sample (without replacement) T = {t1, t2, . . . tki} of size ki ≥ 2 from the set of
players except itself {1, 2, . . . n} \ i. We then use the sample proportions as the estimates for the proportions of the
population following each strategy:

p̂i,h =
1

ki

ki∑
g=1

I(atg = sh)

We then adopt a similar approach to the best response dynamic described above, substituting the true proportions
with the sample estimates.

In the simplest case, k-sampling best response dynamic, we assume that the sampling parameter ki is the
same for each player.

However, the subject of our study is the k1 k2 sampling best response dynamic, where we have two cohorts in
the population, with uniform sampling parameters k1 and k2 respectively. This is the simplest case of a population
with non-homogeneous sampling parameters, and thus provides a starting point for studying the behaviour of such
systems.

3.3 Asymptotically Stable Equilibrium

Let xj,t be the proportion of players in the population adopting strategy sj at time (or time step) t. A state is said
to be an asymptotically stable equilibrium if ∃x1, x2, ...xm with

∑
xj = 1 such that:

lim
t→∞

xj,t = xj∀j

4 Literature review

Ritzberger and Weibull (1995) study the evolution of an infinite population of players in continuous time under
various dynamics. Their main result postulates that pure equilibria (where a single strategy is adopted by the whole
population) constitute the only stable equilibria under a large variety of games.
Sandholm (2001) studies the k-sampling best response dynamic in coordination games, where players sampled from
the population get opportunities to update their strategies by sampling the behavior of k opponents and playing
a best response to that sample. The paper shows that if the game has a p-dominant strategy played initially by
a fraction of the population, and the population size is large enough, play converges to the an equilibrium of the
p-dominant strategy with high probability. Specifically, if the proportion of players adopting si exceeds 1

k , this
proportion, after a large number of games, converges in probability to 1. This holds for any k ≥ 2. The proof
involves analyzing a stochastic process (Markov chain) for the number of players not currently playing the dominant
strategy.

5 Methodology

5.1 Finite population, discrete time space case

Here, we attempt to model the k1 k2 sampling best response dynamic for coordiation games. We consider a
population of n players, where αn players have sampling parameter k1, while (1− α)n players have parameter k2.
For all players, we consider identical action spaces of two strategies Ai = {s1, s2}. We consider coordination games,
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where players have a positive payoff for facing a player with the same strategy, and zero for facing a player with a
different strategy. Thus, v(s1, s2) = v(s2, s1) = 0. v(s1, s1) and v(s2, s2) are assumed to be some positive constants
a and b respectively. The payoff matrix is thus:

Vi =

[
a 0
0 b

]
Since we have only two possible actions, the action profile of players except i, a−i can be parametrized by the
proportion pi of players except i adopting action s1 (we will simply have (1− pi) proportion of players with action
s2).

Ui(ai, pi) = pi · v(ai, s1) + (1− pi) · v(ai, s2)

We substitute the true proportion pi with the sample proportion p̂i. We can thus define the approximate best
response function in this case using p̂i:

B′
i(p̂i) =


{s1} if p̂i · a > (1− p̂i) · b
{s1, s2} if p̂i · a = (1− p̂i) · b
{s2} if p̂i · a < (1− p̂i) · b

The pseudocode for modelling the dynamics over time is as follows:

Algorithm 1 Finite population, discrete time simulation

Initialize population of num agents agents
for i = 1 to n steps do
for all agents in population do
Sample k1 or k2 other players from population (according to the agent’s initialisation)
Let n1 be number of pl from the sample following action 1
p̂1 = n1

sample size

p̂2 = sample size−n1

sample size

Û1 = p̂1 ∗ a
Û2 = p̂2 ∗ b
Update strategy based on which estimated payoff Ûi is higher

end for
Calculate and print proportion of strategy 1

end for

We have created a web-based application for visual inspection and review of the evolution of the state. The source
code is available on our Github repository.

5.2 Infinite population, continuous time space case

Let us first examine the simple sampling best response dynamic. Assume that we have infinitely many players
interacting over inifinitesimal time steps. We have a vector x = (x1, x2, ...xm) where xj is the proportion of players
following strategy sj over time. Let u = (u1, u2, ...um) be the payoff vector (diagonal of the payoff matrix) where
uh = v(sh, sh); since we consider only coordination games, v(sh, sj) = 0 when j ̸= h.
We have a function wj(x,u, k) which represents the expected proportion of players following sj at the next in-
finitesimally incremented time step. We can represent the rate of change as the difference of this with the previous
proportion, giving us the differential equation:

dxj

dt
= wj(x,u, k)− xj

Suppose, Xj represents the numbers of agents following strategy sj from amongst a sample of k players randomly
sampled from the population. Then, X = (X1, X2, ...Xm) is a random vector from a multinomial distribution with
k trials and with event probabilities x1, x2, ...xm. Let p̂h = Xh

k , representing the sample estimate of the proportion
of sj in the population.
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wj(x,u, k) = E[I(sj is the sampling best response)]

= P(sj is the sampling best response)

=
∑

P(sj is the sample best response for a given X)

=
∑

X1+X2+...+Xm=k

k!

X1!X2! . . . Xm!
(

m∏
j=1

(x
Xj

j )) · I (sj is the best response given X)

=
∑

X1+X2+...+Xm=k

k!

X1!X2! . . . Xm!
(

m∏
j=1

(x
Xj

j )) · I(j = argmax
h∈{1,2,..m}

(p̂huh))

(1)

For k1 k2 sampling,
dxj

dt
= Wj(x,u, k1, k2, α)− xj

where:
Wj(x,u, k1, k2, α) = α ∗ wj(x,u, k1) + (1− α) ∗ wj(x,u, k2)

We then use this system of ordinary differential equations to model the trajectory for using computational
methods, specifically the odeint module from the Python library scipy.

For our study, we assume m = 3 possible actions. The pseudocode for modelling the dynamics over time is as
follows:

Algorithm 2 Infinite population, continuous time simulation

Input: Sampling sizes k1, k2, proportion α, payoffs u1, u2, u3

define function w(x1, x2, k) to calculate the transition probabilities:
Initialise an array, Y = (Y1, Y2, Y3).
for i = 0 to k do
for j = 0 to k − i do

Calculate multinomial coefficient c = k!
j!·i!·(k−i−j)!

Calculate sample proportions: p̂1 = i
k p̂2 = j

k p̂3 = k−i−j
k

if p̂1 · u1 > p̂2 · u2 and p̂1 · u1 > p̂3 · u3 then
Increment Y1 by c× (x1)

i × (x2)
j × (1− x1 − x2)

k−i−j

else if p̂2 · u2 > p̂1 · u1 and p̂2 · u2 > p̂3 · u3 then
Increment Y2 by c× (x1)

i × (x2)
j × (1− x1 − x2)

k−i−j

else
Increment Y3 by c× (x1)

i × (x2)
j × (1− x1 − x2)

k−i−j

end if
end for

end for
return Y
end function

define function W (x1, x2, k1, k2, α) = α · w(x1, x2, k1) + (1− α) ·W (x1, x2, k2)

define system of differential equations system(x1, x2, t):
dx1

dt = W (x1, x2)[0]− x1
dx2

dt = W (x1, x2)[1]− x2

Generate a grid of points within the simplex
Initialize a list to store final points of trajectories
Compute the trajectories of the dynamic starting from the given initial points for a given amount of time.
Perform clustering on final points to identify stable points
Average points within each cluster to determine stable points
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For this model as well, we have created and hosted an interface for visual inspection and review of the evolution
of the state. The source code is available on our Github repository.

6 Results

After iterating through various parameters, we find several examples of mixed equilibria (where two or more strate-
gies coexist) in coordination games. This reproduces and verifies the previous experimental and theoretical results
of Dr Arigapudi’s research, and adds context and nuance to previous research which has dealt with the prevalence
of pure equilibria (where only one strategy survives) in sampling best response dynamics. We present one example
each of the discrete and continuous cases.
In the discrete case, we initialise the simulation at n = 104, k1 = 3, k2 = 500, α = 0.4, a = 2.4, b = 1, (x1)t=0 = 0.1
and run it for 24 time steps. The dynamic stabilises around (0.177, 0.823).

Figure 1: The trajectory of the dynamic

In the continuous case, we take k1 = 3, k2 = 20, α = 0.4, u1 = 2.5, u2 = 1, u3 = 0.4 and run it for 6 time units. We
can observe that the system of differential equations does not converge towards the origin (0,0,1), (0,1,0) or (1,0,0)
(unless it is initialised there). Instead, the equilibria are (0.79, 0, 0.21) and (0, 0.79, 0.21). This demonstrates the
existence of a mixed equilibria within a continuous time, infinite population model of k1k2 sampling best response
dynamics.
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Figure 2: The trajectories of the dynamic from set of initial points.
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