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We examine the following questions:

1. Are optimal importance sampling proposals feasible to sample from using MCMC?
2. Is it practically beneficial to use optimal IS estimates over vanilla Monte Carlo one?
3. Can we construct and use alternative IS proposals more viable, or amenable to MCMC?

Optimal importance sampling proposals

We find a detailed discussion of the various optimal IS proposals in Llorente et al. Note that
these are derived under the assumption that our samples will be independent and identically
distributed.

Univariate 𝐼 and 𝑓 Multivariate I and f
Standard IS 𝑞𝑜𝑝𝑡(𝜃) ∝ ̃𝜋(𝜃) ⋅ |𝑓(𝜃)| 𝑞𝑜𝑝𝑡(𝜃) ∝ ̃𝜋(𝜃) ⋅ ‖f(𝜃)‖2
SNIS 𝑞𝑜𝑝𝑡(𝜃) ∝ ̃𝜋(𝜃) ⋅ |𝑓(𝜃) − 𝐼| 𝑞𝑜𝑝𝑡(𝜃) ∝ ̃𝜋(𝜃) ⋅ ‖f(𝜃) − I‖2

Table 1: Optimal importance sampling proposals

Interpretation and geometry

The optimal vanilla importance sampling proposal can be considered as upweighting regions
with higher values of the function whose expectation we want to compute. The optimal self-
normalised proposal can perhaps also be interpreted as upweighting regions with more ‘outlying’
function values (with respect to the expectation). The norm component takes a conical shape
around the expectation (which is often near the mode in a unimodal setup), leading to a
multimodal optimal SNIS density (plotted here for estimating the mean and variance of a
simple 1D Gaussian posterior).
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Sampling from optimal proposals via MCMC

Proximal computation

Moreau Yosida envelope of L2 norm

Even assuming 𝜋(𝜃) to be differentiable, the norm term makes using derivative-based algorithms
infeasible. Some prior work (Shukla et al, Pereyra et al) uses proximal methods to obtain
a differentiable approximation to our MCMC target density and sample from it. However,
these can not be used directly because of the condition of log-concavity of the MCMC target
density.We can instead choose to selectively apply a Moreau envelope on the norm component of
the density- which is convex. The envelope smooths the optimal density in the neighbourhood
of the non differentiability.

We derive the general Moreau envelope of the L2 norm:

𝑁𝜆(x) = inf
𝑦∈ℝ𝑑

(‖𝑦 − 𝜇‖2 + 1
2𝜆‖𝑥 − 𝑦‖2

2) = inf
𝑧

{‖𝑧‖ + 1
2𝜆‖𝑥 − (𝑧 + 𝜇)‖2} .

Let 𝐿(𝑧) = ‖𝑧‖ + 1
2𝜆‖𝑥 − 𝑧 − 𝜇‖2 denote our objective function. To find the infimum, we take

the gradient of 𝐿(𝑧) with respect to 𝑧 and set it to zero:

∇𝐿(𝑧) = 𝑧
‖𝑧‖ − 1

𝜆(𝑥 − 𝑧 − 𝜇)∶ = 0
𝑧
𝜆 + 𝑧

‖𝑧‖ = 1
𝜆(𝑥 − 𝜇)

𝑧 = (𝑥 − 𝜇)
𝜆( 1

𝜆 + 1
‖𝑧‖)

Let ‖𝑧‖ = 𝑟 and taking norm on both sides:
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‖𝑧‖ = ∥ 𝑥 − 𝜇
1 + 𝜆

‖𝑧‖
∥

𝑟 = 𝑟‖𝑥 − 𝜇‖
𝑟 + 𝜆

𝑟 = ‖𝑥 − 𝜇‖ − 𝜆

This solution is valid only if ‖𝑥 − 𝜇‖ > 𝜆, and in that case we can directly substitute 𝑧 = 𝑥−𝜇
1+ 𝜆

𝑟
and 𝑟 = ‖𝑥 − 𝜇‖ − 𝜆 into 𝐿(𝑧):

𝑁𝜆(𝑥) = (‖𝑥 − 𝜇‖ − 𝜆) + 1
2𝜆 ∥𝑥 − 𝑥 − 𝜇

1 + 𝜆
‖𝑥−𝜇‖−𝜆

− 𝜇∥
2

= (‖𝑥 − 𝜇‖ − 𝜆) + 1
2𝜆 ∥𝑥 − 𝜇 − (‖𝑥 − 𝜇‖ − 𝜆)(𝑥 − 𝜇)

‖𝑥 − 𝜇‖ ∥
2

= (‖𝑥 − 𝜇‖ − 𝜆) + 1
2𝜆 ∥𝜆(𝑥 − 𝜇)

‖𝑥 − 𝜇‖ ∥
2

= ‖𝑥 − 𝜇‖ − 𝜆
2

If instead ‖𝑥 − 𝜇‖ ≤ 𝜆, the infimum occurs at 𝑧 = 0. We can prove this by showing 𝐿(𝑧) > 𝐿(0)
for all 𝑧 ≠ 0. Consider the difference:

𝐿(𝑧) − 𝐿(0) = ‖𝑧‖ + 1
2𝜆‖𝑥 − 𝑧 − 𝜇‖2 − 1

2𝜆‖𝑥 − 𝜇‖2

= ‖𝑧‖ + 1
2𝜆 (‖𝑥 − 𝜇‖2 − 2(𝑥 − 𝜇)⊤𝑧 + ‖𝑧‖2) − 1

2𝜆‖𝑥 − 𝜇‖2

= ‖𝑧‖ − 1
𝜆(𝑥 − 𝜇)⊤𝑧 + 1

2𝜆‖𝑧‖2

≥ ‖𝑧‖ − 1
𝜆‖𝑥 − 𝜇‖ ⋅ ‖𝑧‖ + 1

2𝜆‖𝑧‖2 by Cauchy-Schwarz |(𝑥 − 𝜇)⊤𝑧| ≤ ‖𝑥 − 𝜇‖ ⋅ ‖𝑧‖

≥ ‖𝑧‖ (1 − ‖𝑥 − 𝜇‖
𝜆 ) + 1

2𝜆‖𝑧‖2

≥ 0

Substuting 𝑧 = 0 we get:

𝑁𝜆(𝑥) = {
1

2𝜆‖𝑥 − 𝜇‖2
2, ‖𝑥 − 𝜇‖2 ≤ 𝜆

‖𝑥 − 𝜇‖2 − 𝜆
2 , ‖𝑥 − 𝜇‖2 > 𝜆
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Positivity condition

Self-normalised importance sampling requires 𝑞(𝜃) > 0 wherever 𝜋(𝜃) > 0 (Owen, pg 8). We
can ensure this by adding a small constant epsilon to the norm. This also ensures our weights
are bounded.

𝑤(𝜃) = ̃𝜋(𝜃)
̃𝑞(𝜃) = 1

𝑁𝜆(𝑓(𝜃) − 𝜇) + 𝜖 ≤ 1
𝜖

Thus, our quasi-optimal unnormalised density takes the form:

̂𝑞(𝜃) ∝ ̃𝜋(𝜃) ⋅ (𝑁𝜆 (𝑓(𝜃) − ̂𝜇) + 𝜖)

Moreau-Yosida envelope of general log-density

For a general form target density 𝑝(𝑥) , we can use numerical optimisation methods to find the
envelope (Pereyra 2015, Shukla et al 2025). Our objective is to find:

𝜋𝜆(𝜃) = sup
𝑢∈ℝ𝑑

{ 1
𝑘′ 𝜋(𝑢) exp (−‖𝜃 − 𝑢‖2

2𝜆 )}
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where 𝑘′ is a normalisation constant. Taking 𝜓(𝜃) = − log 𝜋(𝜃) as the negative log likelihood,
we can reformulate this as finding:

𝜓𝜆(𝜃) = inf
𝑢∈ℝ𝑑

{− log 𝜋(𝑢) + ‖𝜃 − 𝑢‖2

2𝜆 }

In practice, to evaluate this at some value 𝜃, we need to find the proximal mapping:

̃𝜃 ∶= prox𝜆
𝜓(𝜃) = arg min

𝑢∈ℝ𝑑
{𝜓(𝑢) + ‖𝜃 − 𝑢‖2

2𝜆 } =∶ arg min
𝑢∈ℝ𝑑

𝑓𝜆
𝜃 (𝑢)

Then, to compute 𝜓𝜆(𝑥)

𝜓𝜆(𝜃) = 𝜓( ̃𝜃) + ‖𝜃 − ̃𝜃‖2

2𝜆

Using this we can evaluate 𝜋𝜆(𝜃) = exp(−𝜓𝜆(𝜃)). Further, we can also compute the log-gradient
of

−∇𝜓𝜆(𝜃) = ∇ log 𝜋𝜆(𝜃) =
̃𝜃 − 𝜃
𝜆

This can be used to implement gradient based algorithms on 𝜋𝜆(𝜃) as a substitute for non-
differentiable 𝜋(𝜃).

Special case: Poisson regression

We now derive the algorithm for conducting PMALA on the IS optimal density in case of poisson
regression, on which we have conducted simulation studies.

Poisson Regression Model

Consider a Poisson regression model with 𝑛 observations and 𝑑 predictors. Given:

• Design matrix 𝑋 ∈ ℝ𝑛×𝑑

• Response vector 𝑦 ∈ ℕ𝑛

• Parameters 𝜃 ∈ ℝ𝑑

• An estimate for our integral of interest ̂𝜇

Likelihood: 𝑦𝑖 ∼ Poisson(𝑒𝑋𝑖𝜃)
Prior: 𝜃 ∼ 𝒩(0, 𝜎2

0𝐼)
The negative log-optimal density 𝜓(𝜃) is:

𝜓(𝜃) = −
𝑛

∑
𝑖=1

[𝑦𝑖(𝑋𝑖𝜃) − 𝑒𝑋𝑖𝜃]
⏟⏟⏟⏟⏟⏟⏟⏟⏟

Negative log-likelihood

+ 1
2𝜎2

0
‖𝜃‖2

⏟
Negative log-prior

− 1
2 log ‖𝜃 − ̂𝜇‖2
⏟⏟⏟⏟⏟

L2 norm term

+𝐶 (1)
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Let the proximal loss function 𝑓𝜆
𝜃 (𝑢) = 𝜓(𝑢)+ 1

2𝜆‖𝜃 −𝑢‖2. We consider the gradient and hessian
of this expression in order to conduct Newton-Raphson optimization to find the arg min.

∇𝜓(𝑢) = − 𝑋⊤(𝑦 − 𝑒𝑋𝑢)⏟⏟⏟⏟⏟⏟⏟
Log-likelihood grad

+ 𝑢
𝜎2

0⏟
Prior grad

− 𝑢 − ̂𝜇
‖𝑢 − ̂𝜇‖2⏟

L2 norm grad

∇𝑢𝑓𝜆
𝜃 (𝑢) = ∇𝜓(𝑢) + 𝑢 − 𝜃

𝜆
= −𝑋⊤(𝑦 − 𝑒𝑋𝑢) + 𝑢

𝜎2
0

− 𝑢 − ̂𝜇
‖𝑢 − ̂𝜇‖2 + 𝑢 − 𝜃

𝜆

∇2𝜓(𝑢) = 𝑋⊤𝑊𝑋⏟
Log-likelihood Hess

+ 𝐼𝑑
𝜎2

0⏟
Prior Hess

− 𝐼𝑑
‖𝑢 − ̂𝜇‖2 + 2(𝑢 − ̂𝜇)(𝑢 − ̂𝜇)⊤

‖𝑢 − ̂𝜇‖4⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
L2 norm Hess

∇2
𝑢𝑓𝜆

𝜃 (𝑢) = ∇2𝜓(𝑢) + 𝐼𝑑
𝜆

= 𝑋⊤𝑊𝑋 + 𝐼𝑑
𝜎2

0
− 𝐼𝑑

‖𝑢 − ̂𝜇‖2 + 2(𝑢 − ̂𝜇)(𝑢 − ̂𝜇)⊤

‖𝑢 − ̂𝜇‖4 + 𝐼𝑑
𝜆

where 𝑊 = diag(𝑒𝑋𝑢)

PMALA Algorithm for optimal Poisson Regression IS target

Initialize: 𝜃(0) ≠ ̂𝜇 (initial parameter vector) and 𝑘 = 0 (iteration counter)

1. While 𝑘 < 𝑁 :

a. Proximal Optimization:
• Solve using Newton-Raphson:

̃𝜃(𝑘) = arg min
𝑢

𝑓𝜆
𝜃 (𝑢) = arg min

𝑢
[𝜓(𝑢) + 1

2𝜆‖𝜃(𝑘) − 𝑢‖2]

• The iterations will be:

𝑢(𝑘)
𝑗+1 = 𝑢(𝑘)

𝑗 − (∇2𝑓𝜆
𝜃 (𝑢(𝑘)

𝑗 ))
−1

⋅ ∇𝑓𝜆
𝜃 (𝑢(𝑘)

𝑗 )

b. Compute Proximal Gradient

𝑔(𝑘) =
̃𝜃(𝑘) − 𝜃(𝑘)

𝜆
c. Metropolis-Hastings Proposal: 𝜃′ ∼ 𝒩(𝜃(𝑘) + 𝜖𝑔(𝑘),  2𝜖𝐼𝑑)
d. Log Acceptance Probability:

log 𝛼 = − 𝜓𝜆(𝜃′) + 𝜓𝜆(𝜃(𝑘))⏟⏟⏟⏟⏟⏟⏟⏟⏟
Target ratio

+ 1
4𝜖‖𝜃(𝑘) − (𝜃′ + 𝜖𝑔′)‖2 − 1

4𝜖‖𝜃′ − (𝜃(𝑘) + 𝜖𝑔(𝑘))‖2
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Proposal ratio
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e. Accept/Reject:

𝜃(𝑘+1) = {𝜃′ w.p. min(1, 𝛼)
𝜃(𝑘) otherwise

f. Increment: 𝑘 ← 𝑘 + 1

Output: Markov chain {𝜃(0), 𝜃(1), ..., 𝜃(𝑁)}

Proposed methods

We restrict our scope to the identity function, g(x) = x. We compare three samplers:

1. MALA: MALA on target 𝜋(𝜃)
2. MNMALA: MALA on Moreau-norm adjusted target (SNIS) ̂𝑞(𝜃)
3. PMALA: MALA on Moreau-envelope of optimal density (SNIS) 𝜋𝜆(𝜃)
For 2 & 3, we use the maximum likelihood estimate as ̂𝜇, the integral estimate, for approximating
the optimal SNIS density.

Numerical experiments

We consider the problem of Poisson regression on the epil dataset from package MASS, involving
6 covariates.

Variance

We observe very marginal variance reduction using PMALA, while MNMALA gives worse per-
formance than simply MALA.

Variance at 1e3 samples:

Parameter PMALA MNMALA MALA
(Intercept) 0.0002532014 0.0013638918 0.0009309689
lbase 0.0002370926 0.0010102440 0.0005255328
trtprogabide 0.0007315571 0.0023896189 0.0015707444
lage 0.0045597276 0.0087878501 0.0036886813
V4 0.0002817426 0.0009914947 0.0005008303
lbase:trtprogabide 0.0009677908 0.0027321465 0.0009189163
Total Variance 0.007031112 0.017267236 0.008235674

Variance at 1e4 samples:

Parameter PMALA MNMALA MALA
(Intercept) 2.897564e-05 5.236143e-05 4.050534e-05
lbase 4.540592e-05 1.084788e-04 5.682031e-05
trtprogabide 7.251600e-05 2.675100e-04 1.029270e-04
lage 5.218886e-04 1.260951e-03 1.307645e-03
V4 2.314834e-05 1.331611e-04 5.848811e-05
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Parameter PMALA MNMALA MALA
lbase:trtprogabide 9.571069e-05 4.182272e-04 1.279511e-04
Total Variance 7.89549e-04 2.23986e-03 1.69604e-03

Variance at 1e5 samples:

Parameter PMALA MNMALA MALA
(Intercept) 4.748321e-06 8.700292e-06 1.238639e-05
lbase 4.517597e-06 1.249922e-05 1.246645e-05
trtprogabide 1.037464e-05 2.608106e-05 2.714461e-05
lage 7.631968e-05 1.270340e-04 2.541750e-04
V4 1.566252e-06 1.064667e-05 6.565885e-06
lbase:trtprogabide 1.174674e-05 4.020578e-05 3.147683e-05
Total Variance 1.07768e-04 2.24264e-04 3.42386e-04

Time

Algorithm Mean time for 1e5 samples
PMALA 76.91148
MNMALA 13.24839
MALA 12.81617
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Scalability

P-MALA uses Newton-Raphson and is thus susceptible to failure in case of high dimensional
targets, due to singularity of the Hessian computations (since 𝑓𝜆

𝜃 is non-convex). Despite using
generalised-inverses and gradient descent to attempt to circumvent this, we were unable to get
PMALA to reliably work on the high dimensional football betting dataset (d’Angelo et al) due
to issues of both computational cost and positive definiteness of Hessians, with gradient descent
proving an insufficient substitute for Newton-Raphson and not converging.

Literature review

Most prior research on the intersection of Markov chain samplers and importance sampling deals
with using importance sampling to construct a more efficient estimator than standard Markov
chain Monte Carlo. For example, Rudolf et al and Schuster et al propose self-normalised IS
estimators that utilise all proposed samples, instead of just accepted ones in acceptance-rejection
based Markov chain samplers.

Botev et al is more similar in spirit to what we seek to achieve here. It deals with sampling
from an approximation of the optimal simple IS density using a Markov chain sampler, then
estimating a one-dimensional integral using it.

Conclusion

We explored two techniques for approximating the optimal self-normalised importance sampling
target in order to get lower variance estimators than vanilla Monte Carlo. In the first, we apply
a Moreau envelop on the L2 norm component of the optimal density and then use the resulting
differentiable density as a target for Metropolis-adjusted Langevin sampling. In the second, we
directly use the Moreau envelope of the optimal SNIS density.

Empirically, we observe that the first method does not incur as much computational overhead
as the second. However, we find no significant evidence of variance reduction with the first
method. With the second method, we observe very marginal variance reduction, that is offset
by computation time and scalability constraints. The R scripts used for simulation experiments
can be found at https://github.com/arqamrp/optimal_IS_MCMC.
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