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1 Introduction

The cavity distribution q@n of a client m in federated variational learning serves as an estimate of the counterfactual
posterior if it were computed using only data from the other clients except m.

It serves as a prior for the variational computation of the local posterior at m:
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1.1 Cavity distribution in Partitioned Variational Inference

In PVI, we formulate the approximate posterior as the product of prior and approximate likelihoods
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At the client, we compute the mth cavity distribution by simply dividing out the mth approximate likelihood term:
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2 Cavity distribution in Fed GVI

In Fed-GVI, we treat the approxunate log likelihood terms as loss functions under the GVI framework. Taking
1= logt(l) and 17(6) = M 1$9(6)

3" (6) = argmin {E [1"(6)] + Dlgl|mo |

Under a variational framework, if we want to compute the mth cavity now, we just remove the mth loss term and
repeat the variational optimisation.
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2.1 Cavity loss for Gaussians

We now prove that if our variational family is the family of Gaussians, we can express E, [22/[:1 l,(:)(ﬁ)} as one

single expected negative log likelihood type term [E, [lgi)(ﬂ)] avoiding the need for transmission of the individual
client approximate loss terms for computation of the cavity distribution.

Let us first consider how lﬁ,?(@)s are computed:
15 (8) :=1;71(8) — lo gq(f

Observe that in case of a Gaussian variational family Q, l,(;)(ﬁ) will be in a quadratic form. Thus, we can assume
19(8) = 0,62 + by + cx.

We get

and

If ¢(0) follows N (i, 0?),

E, (17 (0)] = B, [ax6% + by + ¢
= axE, [92] + 0k Eq[0] + cxEq[1]
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Thus,
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Thus, we only require the aggregated a, = Eiw:l a, and by = 22/[:1 by, and not each (ag, by) to compute E, {Zkle ll(f) (9)}
to variationally find the cavity distribution.
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2.2 Exponential family
Assume ¢() ~ Exponential Family: q(#) = h(0) exp (n" T(6) — A(n)).

If l,(f) (0) is the ratio of two members of this exponential family

q1(0) = h1(0) exp (771TT(9) - Al(m)) ; q2(0) = ha(0) exp (772TT(9) - A2(772)) )
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= log h1 () —log ha(0) + 0 T(0) — 1y T(0) — A1 (m) + Az(12)

= (m —m2) "T(0) + (log h1(0) — log ho(60)) — (A1(m1) — Az(n2)) -
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Restricting ourselves to Q such that the base measure h(f) =1
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Thus, we only require the aggregated 22/[:1 N to optimise E, {Zi\il l,(:)(O)] wrt gq.
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