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1 Introduction

The cavity distribution q
(i)
\m of a client m in federated variational learning serves as an estimate of the counterfactual

posterior if it were computed using only data from the other clients except m.

It serves as a prior for the variational computation of the local posterior at m:

q(i)m = argmin
q∈Q

{
Eq [Lm(θ)] +DKL[q||q(i)\m]

}
q(i)m = argmin

q∈Q

{
Eq

[
Lm(θ) + l\m(θ)

]
+DKL[q||π0]

}
1.1 Cavity distribution in Partitioned Variational Inference

In PVI, we formulate the approximate posterior as the product of prior and approximate likelihoods

p(θ|y) = 1

Z
π(θ)

M∏
m=1

f(ym|θ) ≈ 1

Z ′π(θ)

M∏
m=1

tm(θ) = qs(θ)

At the client, we compute the mth cavity distribution by simply dividing out the mth approximate likelihood term:

q
(i+1)
\m (θ) ∝ π(θ)

∏
k ̸=m

t
(i)
k (θ) ∝ q

(i)
s (θ)

t
(i)
k (θ)

2 Cavity distribution in Fed GVI

In Fed-GVI, we treat the approximate log likelihood terms as loss functions under the GVI framework. Taking

l
(i)
k := − log t

(i)
k and l

(i)
s (θ) =

∑M
m=1 l

(i)
m (θ)

q̃(i)s (θ) = argmin
q∈Q

{
E
[
l(i)s (θ)

]
+D[q||π0]

}
Under a variational framework, if we want to compute the mth cavity now, we just remove the mth loss term and
repeat the variational optimisation.

q
(i)
\m = argmin

q∈Q

Eq

∑
j ̸=m

l
(i)
j (θ)

+D[q||π0]

 = argmin
q∈Q

{
Eq

[
l(i)s (θ)− l(i)m (θ)

]
+D[q||π0]

}
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2.1 Cavity loss for Gaussians

We now prove that if our variational family is the family of Gaussians, we can express Eq

[∑M
k=1 l

(i)
k (θ)

]
as one

single expected negative log likelihood type term Eq[l
(i)
s (θ)] avoiding the need for transmission of the individual

client approximate loss terms for computation of the cavity distribution.

Let us first consider how l
(i)
m (θ)s are computed:

l(i)m (θ) := l(i−1)
m (θ)− log

q
(i)
m (θ)

q
(i−1)
s (θ)

Observe that in case of a Gaussian variational family Q, l
(i)
k (θ) will be in a quadratic form. Thus, we can assume

l
(i)
k (θ) = akθ

2 + bkθ + ck.

We get

a
(i)
k = a

(i−1)
k −

[
−1

2

(
1

σ2
m

− 1

σ2
s

)]
and

b
(i)
k = b

(i−1)
k −

[
−1

2
× (−2)

(
µm

σ2
m

− µs

σ2
s

)]

If q(θ) follows N (µ, σ2),

Eq[l
(i)
k (θ)] = Eq

[
akθ

2 + bkθ + ck
]

= akEq[θ
2] + bkEq[θ] + ckEq[1]

= ak(σ
2 + µ2) + bkµ+ ck

Thus,

Eq

[
M∑
k=1

l
(i)
k (θ)

]
=

M∑
k=1

Eq

[
l
(i)
k (θ)

]
=

M∑
k=1

(
ak(σ

2 + µ2) + bkµ+ ck
)

=

(
M∑
k=1

ak

)
(σ2 + µ2) +

(
M∑
k=1

bk

)
µ+

(
M∑
k=1

ck

)

Thus, we only require the aggregated as =
∑M

k=1 ak and bs =
∑M

k=1 bk and not each (ak, bk) to compute Eq

[∑M
k=1 l

(i)
k (θ)

]
to variationally find the cavity distribution.

q
(i)
\m = argmin

q∈Q

Eq

∑
j ̸=m

l
(i)
j (θ)

+D[q||π0]


= argmin

q∈Q

{
Eq

[
l(i)s (θ)− l(i)m (θ)

]
+D[q||π0]

}
= argmin

q∈Q

{
Eq

[
l(i)s (θ)

]
− Eq

[
l(i)m (θ)

]
+D[q||π0]

}
= argmin

q∈Q

{
(as − am)(σ2 + µ2) + (bs − bm)µ+D[q||π0]

}
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2.2 Exponential family

Assume q(θ) ∼ Exponential Family: q(θ) = h(θ) exp
(
η⊤T (θ)−A(η)

)
.

If l
(i)
k (θ) is the ratio of two members of this exponential family

q1(θ) = h1(θ) exp
(
η⊤1 T (θ)−A1(η1)

)
, q2(θ) = h2(θ) exp

(
η⊤2 T (θ)−A2(η2)

)
,

l
(i)
k (θ) = log

q1(θ)

q2(θ)

= log h1(θ)− log h2(θ) + η⊤1 T (θ)− η⊤2 T (θ)−A1(η1) +A2(η2)

= (η1 − η2)
⊤T (θ) + (log h1(θ)− log h2(θ))− (A1(η1)−A2(η2)) .

Restricting ourselves to Q such that the base measure h(θ) = 1

l
(i)
k (θ) = η⊤k T (θ) + ck

Eq[l
(i)
k (θ)] = Eq[η

⊤
k T (θ)] + Eq[ck]

= η⊤k Eq[T (θ)] + ck

= η⊤k T̄q + ck, where T̄q = ∇ηA(η)

Eq

[
M∑
k=1

l
(i)
k (θ)

]
=

M∑
k=1

Eq[l
(i)
k (θ)]

=

M∑
k=1

(
η⊤k T̄q + ck

)
=

(
M∑
k=1

ηk

)⊤

T̄q +

M∑
k=1

ck.

Thus, we only require the aggregated
∑M

k=1 ηk to optimise Eq

[∑M
k=1 l

(i)
k (θ)

]
wrt q.
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