10  Inequalities

Published

December 8, 2025

10.0.1 Jensen’s inequality

For a convex function f: \mathbb R \to \mathbb R and random variable X:

f(\mathbb EX) \leq \mathbb E f(X)

Any norm on \mathbb R^n is convex so:

\|\mathbb E X \| \leq \mathbb E \| X\|

10.0.2 Minkowski’s inequality

Any L^p norm satisifies the triangle inequality for p\geq 1 and X, y \in L^p:

\|X + Y \|_{L_p} \leq \|X \|_{L_p} + \| Y \|_{L_p}

10.0.3 Cauchy-Scharz inequality

\|X Y \|_{L_1} \leq \|X \|_{L_2} \| Y \|_{L_2}

10.0.4 Hölder’s inequality

If pp' = p + p': \|X Y \|_{L_1} \leq \|X \|_{L_p} \| Y \|_{L_{p'}}

10.0.5 Boole’s inequality

Also known as the union bound, it is just countable subadditivity: \mathbb P(\cup_n A_n ) \leq \sum_n \mathbb P(A_n)

10.1 Generalised Markov inequalities

For any non-decreasing non-negative integrable function f, non-negative random variable X and t>0: \mathbb P(X \geq t) \leq \frac{1}{f(t)} \mathbb E[f(X)]

10.1.1 Proof

\begin{align*} \mathbb 1 (y \geq 1) &\leq y\\ \mathbb 1 \left(\frac{f(X)}{f(t)} \geq 1 \right) &\leq \frac{f(X)}{f(t)}\\ \mathbb E \mathbb 1 \left(\frac{f(X)}{f(t)} \geq 1 \right) &\leq \mathbb E\left[ \frac{f(X)}{f(t)}\right] \\ \mathbb P \left(f(X) \geq f(t) \right) &\leq \frac{1}{f(t)} \mathbb E\left[ f(X) \right]\\ \end{align*}

Now, because f is non decreasing:

\begin{align*} X \geq t &\implies f(X) \geq f(t)\\ \{\omega \in \Omega: X(\omega) \geq t \} &\subset \{\omega \in \Omega: f(X(\omega)) \geq f(t) \} \\ \mathbb P \{\omega \in \Omega: X(\omega) \geq t \} &\leq \mathbb P \{\omega \in \Omega: f(X(\omega)) \geq f(t) \} \\ \mathbb P (X \geq t) &\leq \mathbb P (f(X) \geq f(t)) \end{align*}

Combining the two we get the result.

10.1.2 Markov’s inequality

\mathbb P (X \geq t) \leq \frac{\mathbb E X}{t}

10.1.3 Chebyshev’s inequality

Letting X = |Y - \mathbb EY| f(x) = t^2:

P( |Y- \mathbb E Y | \geq t) \leq \frac{\text{Var}[Y]}{t^2}

10.1.4 Chernoff’s bound

Let f(x)= \exp sx for s \geq 0: \mathbb P (X \geq t) \leq e^{-st} \mathbb E[e^{sX}]

Thus,

\mathbb P (X \geq t) \leq \inf_{s\geq 0} e^{-st} \mathbb E[e^{sX}]

10.2 Orlicz norms

10.3 Techniques for dependent variables