Annealed Importance Sampling (1998). Radford M. Neal. Link
Course notes for Introduction to Monte Carlo Methods, Chapter 2 (n.d.). Qing Zhou. Link
Target-aware Bayesian inference via generalized thermodynamic integration (2023). Llorente, Fernando and Martino, Luca and Delgado, David.
A First Course in Monte Carlo Methods (2024). Daniel Sanz-Alonso and Omar Al-Ghattas. Link
Monte Carlo theory, methods and examples (2013). Art B. Owen. Link
High-Dimensional Probability (2025). Roman Vershynin. Link
Provable benefits of annealing for estimating normalizing constants: Importance Sampling, Noise-Contrastive Estimation, and beyond (2023). Chehab, Omar and Hyvarinen, Aapo and Risteski, Andrej. Link
Optimality in importance sampling: a gentle survey (2025). Llorente, Fernando and Martino, Luca. Link
Marginal Likelihood Computation for Model Selection and Hypothesis Testing: An Extensive Review (2023). Llorente, F. and Martino, L. and Delgado, D. and López-Santiago, J.. Link
The sample size required in importance sampling (2017). Sourav Chatterjee and Persi Diaconis. Link
Non-Uniform Random Variate Generation (1986). Luc Devroye. Link
Probabilistic Computation (2019). Michael Betancourt. Link
Parallel Tempering With a Variational Reference (2023). Nikola Surjanovic and Saifuddin Syed and Alexandre Bouchard-Côté and Trevor Campbell. Link
Annealing between distributions by averaging moments (2013). Grosse, Roger B and Maddison, Chris J and Salakhutdinov, Russ R. Link
Target–Aware Bayesian Inference: How to Beat Optimal Conventional Estimators (2020). Rainforth, Tom and Golinski, Adam and Wood, Frank and Zaidi, Sheheryar.
Neural Adaptive Sequential Monte Carlo (2015). Shixiang Gu and Zoubin Ghahramani and Richard E. Turner. Link
Computing the Bayesian Factor from a Markov chain Monte Carlo Simulation of the Posterior Distribution (2010). Martin D. Weinberg. Link